BRCA2 Heterozygosity Delays Cytokinesis in Primary Human Fibroblasts

نویسندگان

  • Asta Björk Jonsdottir
  • Maaike P. G. Vreeswijk
  • Ron Wolterbeek
  • Peter Devilee
  • Hans J. Tanke
  • Jorunn E. Eyfjörd
  • Karoly Szuhai
چکیده

BACKGROUND Inherited mutations in the tumour suppressor gene BRCA2 greatly increase the risk of developing breast, ovarian and other types of cancers. So far, most studies have focused on the role of BRCA-pathways in the maintenance of genomic stability. In this study we investigated the potential role of the BRCA2 protein in cytokinesis in unmodified primary human fibroblast carrying a heterozygous mutation in the BRCA2 gene. METHODS Cell divisions were monitored with time lapse live-cell imaging. BRCA2 mRNA expression levels in BRCA2+/- and BRCA2+/+ cells were quantified with quantitative real-time polymerase chain reaction (qRT-PCR). To investigate the localization of the BRCA2 protein during cytokinesis, immunofluorescence staining using antibody directed against BRCA2 was carried out. Immunofluorescence staining was performed directly after live-cell imaging and cells with delayed cytokinesis, of which the co-ordinates were saved, were automatically repositioned and visualized. RESULTS We demonstrate that unmodified primary human fibroblasts derived from heterozygous BRCA2 mutation carriers show significantly prolonged cytokinesis. A Subset of the BRCA2+/- cells had delayed cytokinesis (40 min or longer) making the mean cell division time 6 min longer compared with BRCA2+/+ cells, 33 min versus 27 min, respectively. Lower BRCA2 mRNA expression levels were observed in the BRCA2 heterozygous samples compared with the BRCA2 wild type samples. The BRCA2 protein localizes and accumulates to the midbody during cytokinesis, and no difference was detected in distribution and localization of the protein between BRCA2+/- and BRCA2+/+ samples or cells with delayed cytokinesis and normal division time. CONCLUSIONS The delayed cytokinesis phenotype of the BRCA2 heterozygous cells and localization of the BRCA2 protein to the midbody confirms that BRCA2 plays a role in cytokinesis. Our observations indicate that in a subset of cells the presence of only one wild type BRCA2 allele is insufficient for efficient cytokinesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polo-like kinase 4 controls centriole duplication but does not directly regulate cytokinesis

Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centrioles duplicate once per cell cycle, and duplication is coordinated by Polo-like kinase 4 (Plk4). We previously demonstrated that Plk4 accumulation is autoregulated by its own kinase activity. However, loss of heterozygosity of Plk4 in mouse embryonic fibroblasts h...

متن کامل

Evidence that the tumor-suppressor protein BRCA2 does not regulate cytokinesis in human cells.

Germline mutations in the tumor-suppressor gene BRCA2 predispose to breast and ovarian cancer. BRCA2 plays a well-established role in maintaining genome stability by regulating homologous recombination. BRCA2 has more recently been implicated in cytokinesis, the final step of cell division, but the molecular basis for this remains unknown. We have used time-lapse microscopy, recently developed ...

متن کامل

BRCA2 phosphorylated by PLK1 moves to the midbody to regulate cytokinesis mediated by nonmuscle myosin IIC.

Cytokinesis is the critical final step in cell division. BRCA2 disruption during cytokinesis is associated with chromosome instability, but mechanistic information is lacking that could be used to prevent cancer cell division. In this study, we report that BRCA2 phosphorylation by the mitotic polo-like kinase (PLK1) governs the localization of BRCA2 to the Flemming body at the central midbody, ...

متن کامل

A cancer-associated mutation inactivates a region of the high-mobility group protein HMG20b essential for cytokinesis

Defects in the completion of cell division by cytokinesis have long been proposed to foster carcinogenesis by engendering chromosome instability, but few tumor suppressor mechanisms controlling this process have so far been identified. Here, we identify a carboxyl (C)-terminal region of the high-mobility group protein HMG20b that is essential for cytokinesis, and report that it is inactivated b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009